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I. Consider a semi-infinite plate which at time t = 0 has flowing past it 

a stream of fluid with coefficient of viscosity ~1~ and kinematic viscosity 

ul; beginning at this moment another fluid flows past it, characterized 

by values p2 and v2. The speed of the fluid is assumed to be constant, 

equal to Voo. 

The problem consists in determining the mixing process of the bound- 

ary layers (see the figure). 

In view of the character of the initial and boundary conditions, the 

solution for the velocity profile in the boundary layer depends upon only 

two parameters 

7,O = 
?4 

vqy1!1’, 

‘Iherefore by setting 

we reduce the boundary layer equations to the formC21 

x 

s’” = V,t 

(i = 1. 2) 

520 
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E” @Ox1 -_E”) c$ + (&_ p$ 3E$ = 8!! (14 

E” (VOT2 -_E”) f$ + ( vOye - 5 &,) !$ = YO !$2 (2 = ;) 

Here us and u,, are respectively the velocity conqonents along and per- 
pendicular to the plate; indices 1 and 2 indicate the characteristics of 
the first and second fluid. 

The boundary conditions for the system (1.1) are the following: 

0 
r Xl = 1 for $=oo,E”>l; v”,=l for 7r=00,E"<1 (1.2) 

VOX1 = ?PYl =o at q=o 

roti = v”a, voyr = vow, 
avO,l 0 avOxa 
7= p,,, at 7 “=A(&” =;) 

Here q” = A([O) is the equation of the surface dividing the fluids, 
which is unknown until the problem is solved; on it evidently 

E” (vex - 6”) A’ = v”,, - ; v”,A (1.3) 

Introduction of the new functions 

V*rl = v”xl, v u1= VOYl for7f < A 

vgx2 = vO*,v' vs = E"(voxs -E”)(l-~)h’+~v”~~+v~(l-~) forr/‘>h 

and the variables 

E’ = E”, T* = 7: for q” < A 

E’ = E”: 7; = (1-:)A + Evr ior vj”> A 

leaves the system (1.1) and the conditions (1.2) and (1.3) unchanged, with 
the quantities p” and YO replaced therein by the single parameter 

k _ p@a 
)LlPl 

Henceforth the index * on ux, uy, 5‘, 9 will be omitted. ‘lhe form of the 
dividing surface is easily determined for the case k = 1. Obviously on it 

vx = f’ (A), vy =;(A#‘--) 

(where f is Blasius’ solution), and condition (1.3) takes the form 

~~-f’w+1=0 (w = E-‘) 
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Hence 

f#=-- 2Jaj fadA 
C, 

The constant C1 is determined from the condition w = 1 at A = m. There- 

fore 

W=- 2t’i fSdh 
co 

In the general case to solve the system (1.1) with boundary conditions 

(1.2)) (1.3) we apply the method of intewal relations. Integrating the 

momentum equation in (1.1) from zero to q = 6(t) (where S(f) is the bound- 

ary layer thickness in the 7, 2‘ variables), using the continuity equation 

snd condition (1.3), we obtain the single integral relation 

In the relation (1.4) 

We describe the vzl and vx2 velocity profiles by polynomials of the 

third degree: 

V Xl = ~o+~l~+u*(~)2+u3(~)3~ 
vxz = b. + bl; + b, (;)“+ bs ($)” 

To determine the coefficients (I,, and b, we use, in addition to the 

conditions (1.2), also the following 

a%1 a%?2 -=o at’i=o, aq 

ha 
-=0 at q=6(E) 

a% k 
a2ux2 aSvxl 

F= T’ 
-_=k2!?.$ 

a?3 
at 7j = A (E) 

(1.5) 

which result from equations (1.1) and the definition of boundary layer 

thickness, As a result we obtain 

V xl = kb, 
( 

3 [(k -1) 22-2(k-I)2 - l];+ ki;)3} (1.6) 

Gc, =I+ b,{2f-3(k-1)z -3[2(k-1)~+1]~-~3(k-1)z~)2+(~!~) 

bs - -fr[1+3(k-l)z+3(k-l)~z~+(3k-l-2k2)z3]-’ i,z = ,1, 
, 
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Substituting these expressions into relations (1.4) and (1.3) (where 

in the latter the value of t, is determined from the continuity equation) 
we obtain a system of tao o rii* znary first-order differential equations for 
the functions z and y = S*: 

42./ +Q (#II + zfl2 - E) y 9 + Ez (fo - El s = 0 

2R--yP+2Ey(EQ’--P’)~+E(EQ--P)~=O 
(1.7) 

Here 

IO (4 = f k [(7k -6) 9 --12 (k --1) z2 -621 b, (z) 

Ii(z) = 3k[1+2(k--l)z_t(l -k)~?]b&) 

Q(z)=~f+(k--l)z+~(k-1)z2+3(k-l)2zS+(--$+~k-fka)zP]b8(z) 

P (z) == [ - $+;(I-k)z- ($ka-- ‘$k+ $$z2+ (-6kS+30k2-8_:k + 

+ $) zs + (7kS - ; h2 -+48k --~)z~+(-6k4+~k3_t-~k2-~k+~)z6+ 

+(k--1)(~k~-~k~-fk+~z~f~-~k~+~k~-~k~-~k-f- 

+ $z’I q (z) 

Clearly the boundary conditions for (1.7) are 

z=1, yq at E=l 

Taking into account that 

z(O)=O, y(O)=y,= 59 

one can determine the behavior of the integral curves z@, y(c) in the 
vicinity of the point 5‘ = 0. 

In fact, assuming that 

2 = E” (a,+ a2E + a& + arE3 + . . .), y == Y, Ii-t- P @I + a + b3E2 + )I 

and using (1.7) we obtain 
n==lt2 ==I 

b I=--- $k -2) W) 

64 
h = a 

(k -1) (2k -3) 
k 

2 (520-421 k) (k -1) 
k 
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In the vicinity of the point [ = 1 the integral curves 2: @‘I and y(g) have 
the form: 

~=1+c,,(l-z)+C~(1-2)~+C~(1-2)~+Cq(1-~)*+C6(~-~)~+~ 

+cs(l-z)@J+... 

y (z) = y, $1 + r& (I- z) + 4 (I- z)* + 4, (I-- 4” + 4 (I-- 2)” 4 

i- 4 (1 - 2)” + ds (1 - 4’1 (I.91 

cl =: dl = 0 

c, = 

sk--1 _- 
13 k 

4= &- 3Ok' - 45k $4 3fika -!%k+ 10 

110 
25-- 

&_)- 480 3k’ 
1wr 

4 ;( 7846k’- 

c4 = -Sk"X 

16132t + 8407) f [!l - 468 (k --iPI (1 - -=) 
IBY, 

d, = 153k8- 306k + 151 
3k* 

- j12048kz- 24616k + 10996)(x -s )] 

Formulas (1.9) have been obtained for sn arbitrary value of y(l) = yi. 
‘lhe purpose of such generality will become clear later; for the case 
under consideration y1 = 280/13, 

We continue the integral curves for z(& and y(e), the equations for 
which are given by formulas (1.3) and (l.o), to a value of the argument 
such that the two curves intersect or reach their minimum separation. 

With a certain approximation it is possible to consider that the curves 
(continuous or discontinuous) obtained as the result of such continuation 
give the solution of the problem posed. 

The accuracy of the assuqtions made csn be estimated from the follob 
ing exa@e. We set k = 1; then the solution of (1.7) satisfying the 
given boundary conditions has the form 
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1 
-= 

96 (12+6a* +724) - 3502’ + 3528 
+ ($ -wa + lJS;$, 5 21602 720 

+7 
8641/c @” 

- 6~~)~ In 
(V/a-z) (V/6+1) 

(1/8+4(1/6---1) 
(1.10) 

(We note that the corresponding analytical expression can also be ob- 
tained for y1 f 280/13. ) 

For the case under consideration, fonmlas (1.8) and (1.9) give res- 
pectively 

In the table are shown values of the function z(6) determined from 
formula (1.10) and from the proposed approximation. ‘Ike discrepancy in 
the results does not exceed 2%. 

TABLE 

i.1 : 052 
0:106 

: 052 
O:lCrS 

E5 
017 

0.343 0.376 0.338 0.3f-i9 0.3336 0.369 
0.410 0.3995 0.406 

0.163 0.163 E 0.496 0.49: 
0.220 0.219 0.606 0.603 
0.280 

2. The results of Section 1 can be extended to the case of flow past 
a plate of a conqressible fluid or gas for uhich the law of viscosity has 
the fon pipI - const.,pFP = const. lhen, as follows fran the work 12 1 , 
the boundary layer equations in the variables 

r=f=+ I.=&d9 ()1=1’*J 
0 

for the functions 

have the sme form as for an incaqmessible fluid, in which it is necess- 

ary to set k - yP*/P,1 P,, (in the integration with respect to q and q” 
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the corresponding density profiles are used). ‘Ihe boundary conditions 

(1.2) and (1.3) also remain unchanged, which is confirmed by the follow- 

ing transformations: 

Consequently, for the case considered the solution obtained in Section 

1 for the variables to, q” can be used for the velocity profile vxi, the 

thickness of the dividing surface and the boundary layer thickness, if y1 

is determined in an appropriate manner. The latter is found from the con- 

dition of continuity at 6 = 1 of the boundary layer thickness in the [, q 

plane for a known value of the boundary layer thickness y (1 +) in the 

P , q” plane. 

For the determination of the temperature profile it is necessary to 

find the solution of the energy equation 

aeo. 
E” (‘ii - 6”) f-$ + (Vii - $Vii ) -& = ff$ $ + ki (1 - ;) d+( v”,i .%) 

(i =1,2; k,=l, k,= k) (2.1) 

with the boundary conditions 

H,=H,, for q’=oo, [“>I; H2=Hm2 for +q’=co, to<1 

H1=H, at q” = 0 (2.2) 

T1=T1, $-+ kza!? at q0 = A”([“) 

Here Hi is the enthalpy, P the Prandtl nunber. For the case P, = P, = 1, 

Cpl = Cp.2 there exist the integrals 

where 8,, 

first and 
integrals 

and en, denote the dimensionless stagnation enthalpies in the 
seconTr. For k = 1, p1 = p2, cPl = cP2 there exist the usual 
eOi = 8 i(voliL 
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3. ‘Ihe results obt’ained in the preceding section can be used for the 

solution of the following problem. Let a shock wave run over a plate with 

velocity U, the velocity of the stream of gas behind the shock being V,. 

Beginning at a certain moment it is replaced by a stream of a second 

gas. If the shock wave and the dividing surface of the gases appear 

sinrultaneously at the leading edge of the plate, then the problem under 

consideration is evidently self-similar. In this case formulas (1.81 and 

(1.9) can be used for its solution. 

Here, as follows from I3 1 , it is necessary to set 

y(1 +)=q+l)(++y 
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